Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries.
نویسندگان
چکیده
A novel ultra-lightweight three-dimensional (3-D) cathode system for lithium sulphur (Li-S) batteries has been synthesised by loading sulphur on to an interconnected 3-D network of few-layered graphene (FLG) via a sulphur solution infiltration method. A free-standing FLG monolithic network foam was formed as a negative of a Ni metallic foam template by CVD followed by etching away of Ni. The FLG foam offers excellent electrical conductivity, an appropriate hierarchical pore structure for containing the electro-active sulphur and facilitates rapid electron/ion transport. This cathode system does not require any additional binding agents, conductive additives or a separate metallic current collector thus decreasing the weight of the cathode by typically ∼20-30 wt%. A Li-S battery with the sulphur-FLG foam cathode shows good electrochemical stability and high rate discharge capacity retention for up to 400 discharge/charge cycles at a high current density of 3200 mA g(-1). Even after 400 cycles the capacity decay is only ∼0.064% per cycle relative to the early (e.g. the 5th cycle) discharge capacity, while yielding an average columbic efficiency of ∼96.2%. Our results indicate the potential suitability of graphene foam for efficient, ultra-light and high-performance batteries.
منابع مشابه
Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries
The electrochemical performance of lithium-oxygen (Li-O2) batteries can be markedly improved through designing the architecture of cathode electrodes with sufficient spaces to facilitate the diffusion of oxygen and accommodate the discharge products, and optimizing the cathode catalyst to promote the oxygen reduction reaction and oxygen evolution reaction (OER). Herein, we report the synthesis ...
متن کاملLong-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge
Lithium-sulphur batteries with a high theoretical energy density are regarded as promising energy storage devices for electric vehicles and large-scale electricity storage. However, the low active material utilization, low sulphur loading and poor cycling stability restrict their practical applications. Herein, we present an effective strategy to obtain Li/polysulphide batteries with high-energ...
متن کاملDischarging a Li-S battery with ultra-high sulphur content cathode using a redox mediator
Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobalt...
متن کامل3-D binder-free graphene foam as a cathode for high capacity Li–O2 batteries
To provide energy densities higher than those of conventional Li-ion batteries, a Li–O2 battery requires a cathode with high surface area to host large amounts of discharge product Li2O2. Therefore, reversible formation of discharge products needs to be investigated in Li–O2 cells containing high surface area cathodes. In this study, a binder-free oxygen electrode consisting of a 3-D graphene s...
متن کاملNovel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries
Novel carbon materials, carbon nanotubes (CNTs) and porous graphene (PG), were exploited and used as conductive additives to improve the rate performance of LiMn2O4 cathode for the rechargeable aqueous Zn/LiMn2O4 battery, namely the rechargeable hybrid aqueous battery (ReHAB). Thanks to the long-range conductivity and stable conductive network provided by CNTs, the rate and cycling performances...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 11 شماره
صفحات -
تاریخ انتشار 2014